

SOFTWARE ENGINEERING

MODULE 2

1. In the classical waterfall model during ___________ phase is the Software Requirement

Specification (SRS) document produced ?

 Ans: Second phase

2. Draw Use Case Dingram of Result Management System of M.Tech. Programme.

Ans:

3. What are the components of state transition diagram ? Give example.

Ans:

Figure – a state diagram for user verification

The basic purpose of a state diagram is to portray various changes in state of the class

and not the processes or commands causing the changes.

Basic components of a statechart diagram –

Initial state – We use a black filled circle represent the initial state of a System or a

class.

Figure – initial state notation

Transition – We use a solid arrow to represent the transition or change of control from

one state to another. The arrow is labelled with the event which causes the change in

state.

Figure – transition

State – We use a rounded rectangle to represent a state. A state represents the conditions

or circumstances of an object of a class at an instant of time.

Figure – state notation

Fork – We use a rounded solid rectangular bar to represent a Fork notation with

incoming arrow from the parent state and outgoing arrows towards the newly created

states. We use the fork notation to represent a state splitting into two or more concurrent

states.

Figure – a diagram using the fork notation

Join – We use a rounded solid rectangular bar to represent a Join notation with incoming

arrows from the joining states and outgoing arrow towards the common goal state. We

use the join notation when two or more states concurrently converge into one on the

occurrence of an event or events.

Figure – a diagram using join notation

Self transition – We use a solid arrow pointing back to the state itself to represent a self

transition. There might be scenarios when the state of the object does not change upon the

occurrence of an event. We use self transitions to represent such cases.

Figure – self transition notation

Composite state – We use a rounded rectangle to represent a composite state also.We

represent a state with internal activities using a composite state.

Figure – a state with internal activities

Final state – We use a filled circle within a circle notation to represent the final state in a

state machine diagram.

Figure – final state notation

4. What are the different types of requirements ? Explain in detail.

Ans:A software requirement can be of 3 types:

● Functional requirements

● Non-functional requirements

● Domain requirements

Functional Requirements: These are the requirements that the end user specifically

demands as basic facilities that the system should offer. All these functionalities need to

be necessarily incorporated into the system as a part of the contract. These are

represented or stated in the form of input to be given to the system, the operation

performed and the output expected. They are basically the requirements stated by the user

which one can see directly in the final product, unlike the non-functional requirements.

For example, in a hospital management system, a doctor should be able to retrieve the

information of his patients. Each high-level functional requirement may involve several

interactions or dialogues between the system and the outside world. In order to accurately

describe the functional requirements, all scenarios must be enumerated.

Non-functional requirements: These are basically the quality constraints that the system

must satisfy according to the project contract. The priority or extent to which these

factors are implemented varies from one project to other. They are also called non-

behavioral requirements.

They basically deal with issues like:

● Portability

● Security

● Maintainability

● Reliability

● Scalability

● Performance

● Reusability

● Flexibility

The process of specifying non-functional requirements requires the knowledge of the

functionality of the system, as well as the knowledge of the context within which the

system will operate.

Domain requirements: Domain requirements are the requirements which are

characteristic of a particular category or domain of projects. The basic functions that a

system of a specific domain must necessarily exhibit come under this category. For

instance, in an academic software that maintains records of a school or college, the

functionality of being able to access the list of faculty and list of students of each grade is

a domain requirement. These requirements are therefore identified from that domain

model and are not user specific.

5. What is the first step of requirement elicitation?

Ans:Identifying Stakeholder

6. What are the Objectives of Requirement Analysis ?

Ans: Requirement Analysis, also known as Requirement Engineering, is the process of

defining user expectations for a new software being built or modified. In software

engineering, it is sometimes referred to loosely by names such as requirements gathering or

requirements capturing.

Objectives of Requirement Analysis

Identify customer's needs.

• Evaluate system for feasibility.

• Perform economic and technical analysis.

• Allocate functions to system elements.

• Establish schedule and constraints.

• Create system definitions.

The various steps of requirement analysis are

(i) Draw the context diagram: The context diagram is a simple model that defines the

boundaries and interfaces of the proposed systems with the external world. It identifies the

entities outside the proposed system that interact with the system.

(ii) Development of a Prototype (optional): One effective way to find out what the

customer wants is to construct a prototype, something that looks and preferably acts as part

of the system they say they want.

We can use their feedback to modify the prototype until the customer is satisfied

continuously. Hence, the prototype helps the client to visualize the proposed system and

increase the understanding of the requirements. When developers and users are not sure

about some of the elements, a prototype may help both the parties to take a final decision.

Some projects are developed for the general market. In such cases, the prototype should be

shown to some representative sample of the population of potential purchasers. Even though

a person who tries out a prototype may not buy the final system, but their feedback may

allow us to make the product more attractive to others.

The prototype should be built quickly and at a relatively low cost. Hence it will always have

limitations and would not be acceptable in the final system. This is an optional activity.

(iii) Model the requirements: This process usually consists of various graphical

representations of the functions, data entities, external entities, and the relationships between

them. The graphical view may help to find incorrect, inconsistent, missing, and superfluous

requirements. Such models include the Data Flow diagram, Entity-Relationship diagram,

Data Dictionaries, State-transition diagrams, etc.

(iv) Finalise the requirements: After modeling the requirements, we will have a better

understanding of the system behavior. The inconsistencies and ambiguities have been

identified and corrected. The flow of data amongst various modules has been analyzed.

Elicitation and analyze activities have provided better insight into the system. Now we

finalize the analyzed requirements, and the next step is to document these requirements in a

prescribed format.

7. What kinds of errors are sought out during requirements validation? Explain.

Ans: • May be requirements are not consistent with the overall objectives for the

System/product

• Requirements may not be specified at the proper level of abstraction. That

is, do some requirements provide a level of technical detail that is inappropriate

at this stage?

• Requirements that are unnecessary or does it represent an add-on feature

that may not be essential to the objective of the system.

• Unbounded and ambiguous requirements.

• Requirements may conflict with other requirements.

• There may be unachievable requirements.

• Requirements that are not testable are considered as errors in validation.

8. Explain seven distinct requirements engineering functions.

Ans: The broad spectrum of tasks and techniques that lead to an understanding of

requirements

is called requirements engineering. It encompasses seven distinct tasks: inception,

elicitation, elaboration, negotiation, specification, validation, and management. It is

important to note that

some of these tasks occur in parallel and all are adapted to the needs of the project.

1. Inception

● Inception is a task where the requirement engineering asks a set of questions to establish

a software process.

● In this task, it understands the problem and evaluates with the proper solution.

● It collaborates with the relationship between the customer and the developer.

● The developer and customer decide the overall scope and the nature of the question.

2. Elicitation

Elicitation means to find the requirements from anybody.

The requirements are difficult because the following problems occur in elicitation.

Problem of scope: The customer give the unnecessary technical detail rather than clarity

of the overall system objective.

Problem of understanding: Poor understanding between the customer and the developer

regarding various aspect of the project like capability, limitation of the computing

environment.

Problem of volatility: In this problem, the requirements change from time to time and it

is difficult while developing the project.

3. Elaboration

● In this task, the information taken from user during inception and elaboration and are

expanded and refined in elaboration.

● Its main task is developing pure model of software using functions, feature and

constraints of a software.

4. Negotiation

● In negotiation task, a software engineer decides the how will the project be achieved

with limited business resources.

● To create rough guesses of development and access the impact of the requirement on the

project cost and delivery time.

5. Specification

● In this task, the requirement engineer constructs a final work product.

● The work product is in the form of software requirement specification.

● In this task, formalize the requirement of the proposed software such as informative,

functional and behavioral.

● The requirements are formalize in both graphical and textual formats.

6. Validation

● The work product is built as an output of the requirement engineering and that is

accessed for the quality through a validation step.

● The formal technical reviews from the software engineer, customer and other

stakeholders helps for the primary requirements validation mechanism.

7. Requirement management

● It is a set of activities that help the project team to identify, control and track the

requirements and changes can be made to the requirements at any time of the ongoing

project.

● These tasks start with the identification and assign a unique identifier to each of the

requirement.

● After finalizing the requirement traceability table is developed.

● The examples of traceability table are the features, sources, dependencies, subsystems

and interface of the requirement.

9. How will you negotiate the requirements?

Ans: In an ideal requirements engineering context, the inception, elicitation, and elaboration

tasks determine customer requirements in sufficient detail to proceed to subsequent

Software engineering activities. Unfortunately, this rarely happens. In reality,

You may have to enter into a negotiation with one or more stakeholders. In most

cases, stakeholders are asked to balance functionality, performance, and other product

or system characteristics against cost and time-to-market. The intent of this

negotiation is to develop a project plan that meets stakeholder needs while at the

same time reflecting the real-world constraints (e.g., time, people, budget) that have

been placed on the software team.

The best negotiations strive for a “win-win” result. That is, stakeholders win by

getting the system or product that satisfies the majority of their needs and you (as a

member of the software team) win by working to realistic and achievable budgets

and deadlines.

There are a set of negotiation activities at the beginning of each software

process iteration. Rather than a single customer communication activity, the

following activities are defined:

1. Identification of the system or subsystem’s key stakeholders.

2. Determination of the stakeholders’ “win conditions.”

3. Negotiation of the stakeholders’ win conditions to reconcile them into a set

of win-win conditions for all concerned (including the software team).

Successful completion of these initial steps achieves a win-win result, which becomes

the key criterion for proceeding to subsequent software engineering activities.

10. What do you mean by Quality Function Deployment (QFD) ?

Ans: Quality function deployment (QFD) is a quality management technique that translates

the needs of the customer into technical requirements for software. QFD “concentrates

on maximizing customer satisfaction from the software engineering process”.

QFD identifies three types of requirements:

Normal requirements. The objectives and goals that are stated for a product

or system during meetings with the customer. If these requirements are

present, the customer is satisfied. Examples of normal requirements might be

requested types of graphical displays, specific system functions, and defined

levels of performance.

Expected requirements. These requirements are implicit to the product

or system and may be so fundamental that the customer does not explicitly

state them. Their absence will be a cause for significant dissatisfaction.

Examples of expected requirements are: ease of human/machine interaction,

overall operational correctness and reliability, and ease of software

installation.

Exciting requirements.These features go beyond the customer’s expectations

and prove to be very satisfying when present. For example, software for

a new mobile phone comes with standard features, but is coupled with a set

of unexpected capabilities (e.g., multitouch screen, visual voice mail) that

delight every user of the product.

QFD uses customer interviews and observation, surveys, and examination of historical

data (e.g., problem reports) as raw data for the requirements gathering activity.

These data are then translated into a table of requirements—called the customer

voice table—that is reviewed with the customer and other stakeholders.

11. How the requirements model is built?

Ans: The intent of the analysis model is to provide a description of the required

informational,

functional, and behavioral domains for a computer-based system. The model changes

dynamically as you learn more about the system to be built, and other stakeholders

understand more about what they really require. As the requirements model evolves, certain

elements will become relatively stable, providing a solid foundation for the design tasks that

follow.

Elements of the Requirements Model

● Scenario-based elements.

The system is described from the user’s point of view

using a scenario-based approach. For example, basic use cases and

their corresponding use-case diagrams evolve into more elaborate

template-based use cases. Scenario-based elements of the requirements model

are often the first part of the model that is developed. As such, they serve as input for

the creation of other modeling elements.

● Class-based elements.

Each usage scenario implies a set of objects that are

manipulated as an actor interacts with the system. These objects are categorized into

classes—a collection of things that have similar attributes andcommonbehaviors

● Behavioral elements.

The behavior of a computer-based system can have a profound

effect on the design that is chosen and the implementation approach that is

applied. Therefore, the requirements model must provide modeling elements that

depictbehavior.The state diagram is one method for representing the behavior of a system

by depicting its states and the events that cause the system to change state. A state is any

externally observable mode of behavior.

● Flow-oriented elements.

 Information is transformed as it flows through a computer-based system. The system

accepts input in a variety of forms, applies functions to transform it, and produces output

in a variety of forms. Input may be a control signal transmitted by a transducer, a series

of numbers typed by a human operator, a packet of information transmitted on a network

link, or a voluminous data file retrieved from secondary storage. The transform(s) may

comprise a single logical comparison, a complex numerical algorithm, or a rule-inference

approach of an expert system. Output may light a single LED or produce a 200-page

report.

12. How will you elicit the requirments. Discuss

Ans: Requirements elicitation (also called requirements gathering) combines elements of

problem solving, elaboration, negotiation, and specification. In order to encourage

a collaborative, team-oriented approach to requirements gathering, stakeholders

work together to identify the problem, propose elements of the solution, negotiate

different approaches and specify a preliminary set of solution requirements.

There are various ways to discover requirements

Interviews

Interviews are strong medium to collect requirements. Organization may conduct several

types of interviews such as:

● Structured (closed) interviews, where every single information to gather is decided in

advance, they follow pattern and matter of discussion firmly.

● Non-structured (open) interviews, where information to gather is not decided in advance,

more flexible and less biased.

● Oral interviews

● Written interviews

● One-to-one interviews which are held between two persons across the table.

● Group interviews which are held between groups of participants. They help to uncover

any missing requirement as numerous people are involved.

Surveys

Organization may conduct surveys among various stakeholders by querying about their

expectation and requirements from the upcoming system.

Questionnaires

A document with pre-defined set of objective questions and respective options is handed

over to all stakeholders to answer, which are collected and compiled.

A shortcoming of this technique is, if an option for some issue is not mentioned in the

questionnaire, the issue might be left unattended.

Task analysis

Team of engineers and developers may analyze the operation for which the new system is

required. If the client already has some software to perform certain operation, it is studied

and requirements of proposed system are collected.

Domain Analysis

Every software falls into some domain category. The expert people in the domain can be a

great help to analyze general and specific requirements.

Brainstorming

An informal debate is held among various stakeholders and all their inputs are recorded for

further requirements analysis.

Prototyping

Prototyping is building user interface without adding detail functionality for user to

interpret the features of intended software product. It helps giving better idea of

requirements. If there is no software installed at client’s end for developer’s reference and

the client is not aware of its own requirements, the developer creates a prototype based on

initially mentioned requirements. The prototype is shown to the client and the feedback is

noted. The client feedback serves as an input for requirement gathering.

Observation

Team of experts visit the client’s organization or workplace. They observe the actual

working of the existing installed systems. They observe the workflow at client’s end and

how execution problems are dealt. The team itself draws some conclusions which aid to

form requirements expected from the software.

13. The ___________ is the final outcome of the requirements analysis and specification phase.

Ans: SRS Document

14. What are the different categories of users of SRS document and what are the different

categories of customer requirement ?

Ans:

For customer requirements refer question 4.

15. Explain requirement gathering techniques.

Ans: There are a number of requirements elicitation methods. Few of them are listed below –

1. Interviews

2. Brainstorming Sessions

3. Facilitated Application Specification Technique (FAST)

4. Quality Function Deployment (QFD)

5. Use Case Approach

The success of an elicitation technique used depends on the maturity of the analyst,

developers, users, and the customer involved.

1.Interviews:

Objective of conducting an interview is to understand the customer’s expectations from the

software.

It is impossible to interview every stakeholder hence representatives from groups are selected

based on their expertise and credibility.

Interviews maybe be open ended or structured.

1. In open ended interviews there is no pre-set agenda. Context free questions may be asked

to understand the problem.

2. In structured interview, agenda of fairly open questions is prepared. Sometimes a proper

questionnaire is designed for the interview.

2. Brainstorming Sessions:

• It is a group technique

• It is intended to generate lots of new ideas hence providing a platform to share views

• A highly trained facilitator is required to handle group bias and group conflicts.

• Every idea is documented so that everyone can see it.

• Finally a document is prepared which consists of the list of requirements and their

priority if possible.

3.FacilitatedApplicationSpecificationTechnique:

It’s objective is to bridge the expectation gap – difference between what the developers think

they are supposed to build and what customers think they are going to get.

A team oriented approach is developed for requirements gathering.

Each attendee is asked to make a list of objects that are-

1. Part of the environment that surrounds the system

2. Produced by the system

3. Used by the system

Each participant prepares his/her list, different lists are then combined, redundant entries are

eliminated, team is divided into smaller sub-teams to develop mini-specifications and finally a

draft of specifications is written down using all the inputs from the meeting.

4.QualityFunctionDeployment:

In this technique customer satisfaction is of prime concern, hence it emphasizes on the

requirements which are valuable to the customer.

3 types of requirements are identified –

• Normal requirements – In this the objective and goals of the proposed software are

discussed with the customer. Example – normal requirements for a result management

system may be entry of marks, calculation of results, etc

• Expected requirements – These requirements are so obvious that the customer need not

explicitly state them. Example – protection from unauthorized access.

• Exciting requirements – It includes features that are beyond customer’s expectations

and prove to be very satisfying when present. Example – when unauthorized access is

detected, it should backup and shutdown all processes.

The major steps involved in this procedure are –

1. Identify all the stakeholders, eg. Users, developers, customers etc

2. List out all requirements from customer.

3. A value indicating degree of importance is assigned to each requirement.

4. In the end the final list of requirements is categorized as –

• It is possible to achieve

• It should be deferred and the reason for it

• It is impossible to achieve and should be dropped off

5.UseCaseApproach:

This technique combines text and pictures to provide a better understanding of the

requirements.

The use cases describe the ‘what’, of a system and not ‘how’. Hence they only give a functional

view of the system.

The components of the use case design includes three major things – Actor, Use cases, use case

diagram.

1. Actor – It is the external agent that lies outside the system but interacts with it in some

way. An actor maybe a person, machine etc. It is represented as a stick figure. Actors can

be primary actors or secondary actors.

• Primary actors – It requires assistance from the system to achieve a goal.

• Secondary actor – It is an actor from which the system needs assistance.

2. Use cases – They describe the sequence of interactions between actors and the system.

They capture who(actors) do what(interaction) with the system. A complete set of use

cases specifies all possible ways to use the system.

3. Use case diagram – A use case diagram graphically represents what happens when an

actor interacts with a system. It captures the functional aspect of the system.

• A stick figure is used to represent an actor.

• An oval is used to represent a use case.

• A line is used to represent a relationship between an actor and a use case.

16. Which is not a requirementa elicitation technique ?

(a) Interviews. (b) The use case approach.m

(c) FAST. (d) Data flow diagram.

Ans: (d) Data flow diagram

17. Outcome of requirement specification is:

(a) Design document, (b) Software requirement specification.

(c) Text document (d) None of these.

Ans: (b) Software requirement specification.

18. What is SRS? Explain the need for SRS.

Ans: The production of the requirements stage of the software development process isSoftware

Requirements Specifications (SRS) (also called a requirements document). This report

lays a foundation for software engineering activities and is constructing when entire

requirements are elicited and analyzed. SRS is a formal report, which acts as a representation

of software that enables the customers to review whether it (SRS) is according to their

requirements. Also, it comprises user requirements for a system as well as detailed

specifications of the system requirements.

SRS serves as an input our other all documents created in later stages of software

development life cycle.

● It is a feedback to the customer.

● It’s modularized the problem statement.

● It the bases of system design.

● It defines product scope.
19. What is the importance of requirement analysis ? What are the problems in requirement that the
analyst needs to identify ?
Ans: Requirements analysis results in the specification of software’s operational characteristics,indicates
software’s interface with other system elements, and establishes constraints that software must meet.
Requirements analysis allows you (regardless of whether you’re called a software engineer, an analyst,
or a modeler) to elaborate on basic requirements established during the inception, elicitation, and
negotiation tasks that are part of requirements engineering.Requirements analysis can be a long and
tiring process during which many delicate psychological skills are involved. New systems change the
environment and relationships between people, so it is important to identify all the stakeholders, take
into account all their needs and ensure they understand the implications of the new systems. Analysts
can employ several techniques to elicit the requirements from the customer. These may include the
development of scenarios (represented as user stories in agile methods), the identification of use cases,
the use of workplace observation or ethnography, holding interviews, or focus groups (more aptly
named in this context as requirements workshops, or requirements review sessions) and creating
requirements lists. Prototyping may be used to develop an example system that can be demonstrated to
stakeholders. Where necessary, the analyst will employ a combination of these methods to establish the
exact requirements of the stakeholders, so that a system that meets the business needs is produced.

Problem of scope: The customer give the unnecessary technical detail rather than clarity

of the overall system objective.

Problem of understanding: Poor understanding between the customer and the developer

regarding various aspect of the project like capability, limitation of the computing

environment.

Problem of volatility: In this problem, the requirements change from time to time and it

is difficult while developing the project.

